Download Bioremediation of Salt Affected Soils An Indian Perspective.pdf PDF

TitleBioremediation of Salt Affected Soils An Indian Perspective.pdf
Tags Agriculture Wastewater Groundwater Water Resources
File Size5.8 MB
Total Pages316
Table of Contents
Current Trends and Emerging Challenges in Sustainable Management of Salt-Affected Soils: A Critical Appraisal
	1 Introduction
	2 Salt-Affected Lands: Social and Environmental Costs
	3 The State of Groundwater Resources
	4 The Problem of Poor Quality Water
	5 Plant Growth and Physiology in Salt-Affected Soils
	6 Mechanisms of Salt Stress Alleviation
	7 Salinity-Environment Interaction
	8 Mapping and Characterization of Salt-Affected Soils
	9 Technologies for Harnessing the Productivity of Saline Lands
		9.1 Improving the Land Drainage
		9.2 Land Shaping Models
		9.3 Techniques for Groundwater Recharge
		9.4 Irrigation Management
		9.5 Use of Chemicals and Amendments
		9.6 Plant-Based Solutions for Salinity Mitigation
		9.7 Saline Aquaculture
		9.8 Microbial Approaches for Salinity Mitigation
	10 Emerging Constraints in Salinity Research
	11 Conclusion and Future Thrust
Diagnostic Properties and Constraints of Salt-­Affected Soils
	1 Introduction
	2 Estimates of Salt-Affected Soils
		2.1 Soil Resources of India
	3 Threats to Soil Resources
		3.1 Soil Degradation
			3.1.1 Salt-Affected Soils
			3.1.2 Extent of Salt-Affected Soils in India
		3.2 Characteristics of Salt-Affected Soils
			3.2.1 Natural or Primary Salinity
			3.2.2 Secondary or Human-Induced Salinity
			3.2.3 Sources and Causes of Accumulation of Salts
	4 Constraints
		4.1 Saline Vertisols
		4.2 Waterlogged Soils
		4.3 Coastal Soils: Characteristics and Distribution
			4.3.1 Salient Features of Coastal Problem Soils
			4.3.2 Coastal Saline Soils
			4.3.3 Inundation and Flooding of Soils
Crops and Cropping Sequences for Harnessing Productivity Potential of Sodic Soils
	1 Introduction
	2 Area and Distribution of Salt-Affected Soils
	3 Characteristics of Sodic Soils
	4 Reclamation and Management of Sodic Soils
		4.1 Major Components of Reclamation Technology
	5 Management of Sodic Soils
		5.1 Pre-reclamation Management
		5.2 Amendment Use
	6 Methods of Amendment Application
		6.1 Gypsum Application Method
		6.2 Pyrite Application Method
		6.3 Organic Manures Application Method
		6.4 Biological Reclamation Method
	7 Selection of Crops and Cropping Sequences
	8 Improved Crop Management Practices
		8.1 Nursery Management
			8.1.1 Seed Treatment
			8.1.2 Seed Rate and Nursery Bed Preparation
			8.1.3 Time of Nursery Sowing and Age of Seedlings
			8.1.4 Nutrient Management
		8.2 Method of Transplanting/Sowing
		8.3 Nutrient Management
		8.4 Irrigation Water Management
	9 Crop Management for Saline Soils
		9.1 Selection of Crops and Cropping Sequences
		9.2 Cultural Practices
		9.3 Soil Fertility Management
		9.4 Crop Management
		9.5 Crop Varieties
	10 Management of Waterlogged Sodic Soils
		10.1 Fish Pond-Based Integrated Farming System Model
		10.2 Raised and Sunken Bed-Based Farming System Model
	11 Conclusion
Bio-amelioration of Salt-Affected Soils Through Halophyte Plant Species
	1 Introduction
	2 What Are Halophytes?
	3 Halophytes and Saline Lands
		3.1 India Scenario
		3.2 Scenario in Coastal Gujarat
	4 Salt Tolerance of Halophytes
		4.1 K/Na Selectivity
			4.1.1 Salt Compartmentation
			4.1.2 Na+ and Cl− Concentration and Flux
			4.1.3 Ion Compartmentation in Halophytic Grasses
		4.2 Salt Glands
	5 Importance of Halophytes
		5.1 Agriculture and Land Management
		5.2 Halophytes as Crops
		5.3 Food-Yielding Halophyte and Salt-Tolerant Plants
		5.4 Forages
		5.5 Industrial Oil Production
	6 Phytoremediation
	7 Environmental Conservation
	8 Carbon Sequestration
Microbial Approach for Bioremediation of Saline and Sodic Soils
	1 Introduction
	2 Halophilic Microbes
		2.1 Halophilic Soil Bacteria
		2.2 Moderately Halophilic Bacteria
		2.3 Vesicular Arbuscular Mycorrhiza (VAM)
	3 Mechanisms for Halotolerance
	4 Applications of Halophilic Bacteria
		4.1 Isolation of Halophilic Microbes from Rhizospheric Soils of Halophytes and Endophytes from Leaves
		4.2 Isolation of Halophilic Endophytic Bacteria
		4.3 Tolerance to Sodium Chloride
	5 Bioremediation Potential of Halophilic Bacteria
Plant Growth-Promoting Bacteria: An Emerging Tool for Sustainable Crop Production Under Salt Stress
	1 Introduction
	2 Soil Salinity: The Technical Issues
		2.1 Soil Salinization Process
		2.2 Salinity Impacts on Rhizosphere-Associated Microbes
		2.3 Soil Salinity Effects on Plant Growth and Development
	3 Mitigating Salinity Stress Through Plant Growth-­Promoting Rhizobacteria: Emerging Roles
		3.1 Plant Growth-Promoting Rhizobacteria (PGPR)
		3.2 Direct and Indirect Plant Growth-Promoting Rhizobacteria (PGPR) Mechanics
			3.2.1 Direct Mechanics of Plant Growth-Promoting Rhizobacteria
				Rhizobacterial Biological Nitrogen Fixation (as Bio-fertilizers)
				Rhizobacterial Phosphate Solubilization
				Rhizobacterial Phytohormone Production
				Rhizobacterial IAA Production
				Rhizobacterial Cytokinin (N6-Substituted Amino-Purine) Production
				Rhizobacterial Gibberellin Production
			3.2.2 Indirect Mechanics of Plant Growth-Promoting Rhizobacteria
				Rhizobacterial Siderophore Production
				Rhizobacterial Chitinase and Glucanase Production
				Rhizobacterial Antibiotic Production
				Osmotolerance Induction by PGPR: The Mechanism
				PGPR-Mediated Plant Root Proliferation and Plant Vigour
				PGPR Act as Sink for 1-Aminocyclopropane-1-Carboxylate (ACC)
				PGPR-Induced Ion Homeostasis
				PGPR-Induced Osmolyte Accumulation
				PGPR-Induced Enhanced Antioxidative System
				PGPR-Induced Enhanced Nutrients Uptakes
				PGPR-Mediated Disease Suppression
	4 Future Prospects: Sustaining Shining Saline Agriculture
Arbuscular Mycorrhizal Fungi (AMF) for Sustainable Soil and Plant Health in Salt-­Affected Soils
	1 Introduction
	2 Effects of Salt Stress on Plant Growth and Nutrient Uptake
	3 Effect of AMF on Plant Growth and Nutrient Uptake Under Salinity
	4 AMF for Soil Health
	5 Mechanisms of Amelioration of Salt Stress in AMF-Plant Symbiosis
		5.1 Morpho-physiological Alterations
		5.2 Biochemical and Physiological Changes
			5.2.1 Osmotic Adjustment
			5.2.2 Polyamines
			5.2.3 Antioxidants
			5.2.4 Abscisic Acid Content
		5.3 Physiological Changes
		5.4 Molecular Changes
			5.4.1 Aquaporins
			5.4.2 Δ1-Pyrroline-5-carboxylate Synthetase, Late Embryogenesis Abundant Protein and ABA
			5.4.3 Cation Channels and Transporters
		5.5 Enhanced Nutrient Uptake
	6 Conclusions
Ecology of Saline Soil Microorganisms
	1 Introduction
	2 Halotolerant Microbial Species
	3 PGPR in Stress
	4 Alleviating Salt Stress
		4.1 Soil Bacteria
		4.2 Mechanisms for Stress Conditions
			4.2.1 Phytohormones Synthesis and Modulation
			4.2.2 The Effect of Salinity on the Soil Microorganisms
		4.3 Fungi
	5 Salinity Influencing Microbial Enzyme Activity
	6 Soil Nutrient Transformation
Multifunctional Agroforestry Systems for Bio-­amelioration of Salt-Affected Soils
	1 Introduction
	2 Origin and Distribution of Salt-Affected Soils in India
	3 Characteristics of Salt-Affected Soils
	4 Selection of Multifunctional Tree Species for Salt-Affected Soils
		4.1 Multifunctional Agroforestry Systems
			4.1.1 Silvipastoral System
			4.1.2 Silvi-Agriculture System
			4.1.3 Silvi-Horti-Pasture or Horti-Agricultural System
			4.1.4 Sequential Agroforestry System
		4.2 Alley Cropping
		4.3 Functions of Agroforestry Systems
			4.3.1 Agroforestry Systems as Carbon Sinks
			4.3.2 Enhancing Soil Fertility
			4.3.3 Improving Water Quality and Water Use Efficiency
			4.3.4 Soil Reclamation
		4.4 Biomass and Bioenergy Production
		4.5 Replacement of Cow Dung and Nutrients
		4.6 Employment Generation
	5 Criteria for Evaluating Agroforestry Systems
		5.1 Productivity Evaluations
		5.2 Sustainability Evaluations
		5.3 Adoptability Evaluations
	6 Planting Techniques for Successful Establishment of MFTS
Use of Amendments in Ameliorating Soil and Water Sodicity
	1 Introduction
	2 Sodium Hazard
	3 Managing Sodic and Sodic Water-Irrigated Soils
		3.1 Types of Amendments
		3.2 Chemical Reactions of the Commonly Used Amendments
		3.3 Gypsum as Amendment
		3.4 Application Method
		3.5 Gypsum Fineness and Solubility
	4 Biological Reclamation
		4.1 Reclaiming Sodic Dense Subsoil with Organic Amendments
	5 Phytoremediation
		5.1 Mechanisms and Processes Driving Phytoremediation
	6 Use of Amendments in Ameliorating Sodic and Saline-­Sodic Irrigation Effects
		6.1 Chemical Amendments
		6.2 Organic Amendments
	7 Future Perspectives
Phytoremediation of Metal- and Salt- Affected Soils
	1 Introduction
	2 Food Chain Contamination
	3 Remediation Approaches
		3.1 Different Approaches of Phytoremediation
		3.2 Types of Phytoextraction
		3.3 Hyperaccumulator Plants
	4 Phytoremediation of Metal-Contaminated Soil
	5 Role of PGPR and mycorrhizae for Cleanup of Heavy Metal-Contaminated Soil
	6 Salt-Affected Soil
		6.1 Halophytes for the Remediation of Salt-Affected Soil
		6.2 Salt Adaptation Mechanism by Plants in Salt-Affected Soil
		6.3 Advantages of Microbially Enhanced Phytoextraction
		6.4 Disadvantages of Microbially Enhanced Phytoextraction
	7 Conclusion
Bioremediation of Heavy Metals by Microbes
	1 Introduction
	2 History
	3 Pollution by Heavy Metals
	4 Different Methods of Heavy Metals Removal
		4.1 Precipitation
		4.2 Ion Exchange
		4.3 Electrowinning
		4.4 Electrocoagulation
		4.5 Cementation
		4.6 Reverse Osmosis
		4.7 Electrodialysis
	5 Types of Bioremediation
		5.1 Bioaugmentation
		5.2 Biopiling
		5.3 Biosparging
		5.4 Bioventing
		5.5 Landfarming
		5.6 Composting
		5.7 Bioreactors
	6 Heavy Metal Removal by Microorganisms
		6.1 Bacteria Used for Heavy Metal Removal
			6.1.1 Efflux Transporters
			6.1.2 Binding by Siderophores
			6.1.3 Binding by Specific Proteins
		6.2 Fungi Used for Heavy Metal Removal
	7 Special Features of Bioremediation
	8 Limitations of Bioremediation
	9 Scope and Future Directions
Reclamation of Sodic Soils in India: An Economic Impact Assessment
	1 Introduction
	2 Economic Losses from Sodic Soils
	3 Investment and Economic Feasibility
	4 Economic Impacts of Sodic Land Reclamation
		4.1 Cropping Intensity
		4.2 Productivity and Unit Cost of Production
		4.3 Farm Income and Employment
		4.4 Foodgrain Availability
		4.5 Agribusiness and Household Expenditure
	5 Conclusion
Bioremediation of Salt-Affected Soils: Challenges and Opportunities
	1 Introduction
	2 Vegetative Bioremediation or Phytoremediation
	3 Halophytes for Bioremediation: Future Prospects
	4 Halophytes for Remediating Toxic Metals
	5 Germplasm Collection and Development
	6 Breeding Programs
	7 Commercial Viability
	8 Screening, Selection, and Breeding
	9 Genetic Engineering
	10 Challenges and Future Prospects
	11 Microbial Bioremediation
	12 Recent Trends in Soil Bioremediation
	13 Emerging Sustainable Approaches for Bioremediation
	14 Use of Endophytic Microorganisms
	15 Effects of Salt on Soil Microorganisms
	16 Adaptation of Halophilic Bacteria in Response to High Osmotic Pressure
	17 Applications of Halophilic Bacteria
	18 PGPR for Bioremediation
	19 Cyanobacteria
	20 Plant-Microbiome Interactions for Salt-Stress Alleviation
	21 Rhizosphere Engineering: A Futuristic Approach
	22 Microbial Consortia
		22.1 Application of Microbial Inoculants
	23 Future Challenges for Soil Bioremediation
Document Text Contents
Page 1

Sanjay Arora · Atul K. Singh
Y.P. Singh Editors

of Salt A� ected
Soils: An Indian

Page 2

Bioremediation of Salt Affected Soils:
An Indian Perspective

Page 158


Bolarin, M. C., Fernandez, F. G., Cruz, V., & Cuartero, J. (1991). Salinity tolerance in four wild
tomato species using vegetative yield salinity response curves. Journal of the American Society
for Horticultural Science, 116, 285–290.

Bottrill, D. E., Possingham, J. V., & Kriedemann, P. E. (1970). The effect of nutrient deficiencies
on photosynthesis and respiration in spinach. Plant and Soil, 32, 424–438.

Bowen, G. D., & Rovira, A. D. (1999). The rhizosphere and its management to improve plant
growth. Advances in Agronomy, 66, 1–102.

Bowler, C., Van Montagu, M. V., & Inzé, D. (1992). Superoxide dismutase and stress tolerance.
Annual Review of Plant Physiology and Plant Molecular Biology, 43, 83–116.

Bray, E. A. (2002). Abscissic acid regulation of gene expression during water deficit stress in the
era of Arabidopsis genome. Plant, Cell and Environment, 25, 153–161.

Cadenas, E. (1989). Biochemistry of oxygen toxicity. Annual Review of Biochemistry, 58, 79–110.
Chaumont, F., Barrieu, F., Wojcik, E., Chrispeels, M. J., & Jung, R. (2001). Aquaporins constitute

a large and highly divergent protein family in maize. Plant Physiology, 125, 1206–1215.
Chen, C., & Dickman, M. B. (2005). Proline suppresses apoptosis in the fungal pathogen.

Colletotrichum trifolii. Proceedings of the National Academy of Sciences of the United States
of America, 102, 3459–3464.

Cho, K., Toler, H., Lee, J., Ownley, B., Stutz, J. C., & Moore, J. L. (2006). Mycorrhizal symbiosis
and response of sorghum plants to combined drought and salinity stresses. Journal of Plant
Physiology, 163, 517–528.

Colla, G., Rouphael, Y., Cardarelli, M., Tullio, M., Rivera, C. M., & Rea, E. (2008). Alleviation of
salt stress by arbuscular mycorrhizal in zucchini plants grown at low and high phosphorus
concentration. Biology and Fertility of Soils, 44, 501–509.

Copeman, R. H., Martin, C. A., & Stutz, J. C. (1996). Tomato growth in response to salinity and
mycorrhizal fungi from saline or non saline soil. Horticulture Science, 31, 341–344.

Couee, I., Hummel, I., Sulmon, C., Gowsbet, G., & El Armani, A. (2004). Involvement of polyamines
in root development. Plant Cell Tissue and Organ, 76, 1–10.

Cusido, R. M., Palazon, J., Altobella, T., & Morales, C. (1987). Effect of salinity on soluble protein,
free amino acids and nicotine contents in Nicotiana rustica L. Plant and Soil, 102, 55–60.

Danneberg, G., Latus, C., Zimmer, W., Hundeshagen, B., Schneider-Poetsh, H. G., & Bothe, H.
(1992). Influence of vesicular–arbuscular mycorrhiza on phytohormone balances in maize (Zea
mays L.). Journal of Plant Physiology, 141, 33–39.

Datta, P., & Kulkarni, M. (2014). Arbuscular mycorrhizal colonization enhances biochemical
status in and mitigates adverse salt effect on two legumes. Notulae Scientia Biologicae, 6(3),

Delauney, A. J., & Verma, D. P. S. (1993). Proline biosynthesis and osmoregulation in plants. The
Plant Journal, 4, 215–223.

Doran, J. W., & Linn, D. M. (1994). Microbial ecology of conservation management systems. In J.
L. Hatfield & B. A. Stewart (Eds.), Soil biology: Effects on soil quality (Advances in soil sci-
ence, pp. 1–27). Boca Raton, Florida: Lewis.

Duan, X., Neuman, D. S., Reiber, J. M., Green, C. D., Saxton, A. M., & Augé, R. M. (1996).
Mycorrhizal influence on hydraulic and hormonal factors implicated in the control of stomatal
conductance during drought. Journal of Experimental Botany, 47, 1541–1550.

Duke, E. R., Johnson, C. R., & Koch, K. E. (1986). Accumulation of phosphorus, dry matter and
betaine during NaCl stress of split-root citrus seedlings colonized with vesicular–arbuscular
mycorrhizal fungi on zero, one or two halves. New Phytologist, 104, 583–590.

Estrada-Luna, A. A., & Davies, F. T. (2003). Arbuscular mycorrhizal fungi influence water rela-
tions, gas exchange, abscissic acid and growth of micropropagated Chile ancho pepper
(Capsicum annuum) plantlets during acclimatization and post-acclimatization. Journal of
Plant Physiology, 160, 1073–1083.

Evelin, H., Kapoor, R., & Giri, B. (2009). Arbuscular mycorrhizal fungi in alleviation of salt stress:
A review. Annals of Botany, 104, 1263–1280.

R.S. Yadav et al.

Page 159


Feigin, A., Pressan, E., Imas, P., & Miltau, O. (1991). Combined effects of KNO3 and salinity on
yield and chemical composition of lettuce and Chinese cabbage. Irrigation Science, 12,

Feng, G., Zhang, F. S., Xl, L., Tian, C. Y., Tang, C., & Rengel, Z. (2002). Improved tolerance of
maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble
sugars in roots. Mycorrhiza, 12, 185–190.

Flowers, T. J. (2004). Improving crop salt tolerance. Journal of Experimental Botany, 55,

Garg, N., & Manchanda, G. (2008). Effect of arbuscular mycorrhizal inoculation of salt-induced
nodule senescence in Cajanus cajan (pigeon pea). Journal of Plant Growth Regulation, 27,

Garg, N., & Manchanda, G. (2009). Role of arbuscular mycorrhizae in the alleviation of ionic,
osmotic and oxidative stresses induced by salinity in Cajanus cajan (L.) millsp. (pigeon pea).
Journal of Agronomy and Crop Science, 195, 110–123.

Germ, M., Kreft, I., & Osvald, J. (2005). Influence of UV-B exclusion and selenium treatment on
photochemical efficiency of photosystem II, yield and respiratory potential in pumpkins
(Cucurbita pepo L.). Plant Physiology and Biochemistry, 43, 445–448.

Ghazi, N., & Al-Karaki, G. N. (2006). Nursery inoculation of tomato with arbuscular mycorrhizal
fungi and subsequent performance under irrigation with saline water. Scientia Horticulture,
109, 1–7.

Ghorbanli, M., Ebrahimzadeh, H., & Sharifi, M. (2004). Effects of NaCl and mycorrhizal fungi on
antioxidative enzymes in soybean. Biologia Plantarum, 48, 575–581.

Ghoulam, C. A., & Foursy, K. F. (2002). Effects of salt stress on growth, inorganic ions and proline
accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environmental and
Experimental Botany, 47, 39–50.

Giri, B., Kapoor, R., & Mukerji, K. G. (2003). Influence of arbusculra rmycorrhizal fungi and
salinity on growth, biomass, and mineral nutrition of Acacia auriculiformis. Biology and
Fertility of Soils, 38, 170–175.

Giri, B., & Mukerji, K. G. (2004). Mycorrhizal inoculant alleviates salt stress in Sesbania aegyp-
tiaca and Sesbania grandiflora under field conditions: Evidence for reduced sodium and
improved magnesium uptake. Mycorrhiza, 14, 307–312.

Giri, B., Kapoor, R., & Mukerji, K. G. (2007). Improved tolerance of Acacia nilotica to salt stress
by arbuscular mycorrhiza Glomus fasciculatum may be partly related to elevated K/Na ratios
in root and shoot tissues. Microbial Ecology, 54, 753–760.

Grattan, S. R., & Grieve, C. M. (1994). Mineral nutrient acquisition and response by plants grown
in saline environments. In M. Pessarakli (Ed.), Handbook of Plant and Crop Stress (pp. 203–
226). New York, NY: Marcel Dekker.

Grattan, S. R., & Grieve, C. M. (1999). Salinity-mineral nutrient relations in horticultural crops.
Scientia Horticulturae, 78, 127–157.

Gryndler, M. (2000). Interactions of arbuscular mycorrhizal fungi with other soil organisms. In Y.
Kapulnik & D. D. Douds Jr. (Eds.), Arbuscular mycorrhizas: Physiology and function (pp.
239–262). Dordrecht, The Netherlands: Kluwer Academic Publishers.

Gulzar, S., Khan, M. A., & Ungar, I. A. (2003). Salt tolerance of a coastal salt marsh grass.
Communications in Soil Science Plant Analysis, 34, 2595–2605.

Günes, A., Inal, A., & Alpaslan, M. (1996). Effect of salinity on stomatal resistance, proline and
mineral composition of pepper. Journal of Plant Nutrition, 19, 389–396.

Gupta, A. B., & Sankararamakrishnan, R. (2009). Genome-wide analysis of major intrinsic pro-
teins in the tree plant Populus trichocarpa: Characterization of XIP subfamily of aquaporins
from evolutionary perspective. BMC Plant Biology, 9, 134.

He, Z., He, C., Zhang, Z., Zou, Z., & Wang, H. (2007). Changes of antioxidative enzymes and cell
membrane osmosis in tomato colonized by arbuscular mycorrhizae under NaCl stress. Colloids
and Surfaces B: Biointerfaces, 59(2), 128–133.

Arbuscular Mycorrhizal Fungi (AMF) for Sustainable Soil and Plant Health…

Page 315


and salinity, 258
categories, 265
category, 265, 266
Crop-wise production and monetary

losses, 261
Farmers, 267
land degradation, 257
Land degradation, 271
sodicity-affected lands, 262
Statewise monetary losses, 260
Statewise production losses, 259
tolerance and rooting depth of

crop, 261
Sodic soils

amendment use, 57
biological reclamation, 202–204
Black alkali, 196
characteristics, 55
chemical amendment, 56
definition, 195
degradation, 195
development, 195
gypsum and FYM effect, 56
organic matter decomposition, 56
phytoremediation, 204–206
pre-reclamation management, 57
salt-affected soils, 195
salts and Na+ originate, 195
sodium hazard, 196
water-irrigated, 196–202

Sodic water-irrigated soils
calcium, 198
CEC, 197
drainage, 197
environment, 196
ESP, 197
free lime, 197
gypsum, 197
profile, 197
reclaiming, 197
reclamation, 197

Sodium absorption ratio (SAR), 177, 196, 206,
223, 225

Sodium hazards, 196
Soil bacteria

generas, bacteria, 161
plant growth stimulation, 161
rhizosphere, 161
halophilic, 88

Soil degradation
agricultural/farm activities, 43
estimation, 43
salinisation, 44
salt-affected soils, 44–45

Soil enzymes
animal and vegetable origins, 165
dehydrogenase activity, 165, 166
ecosystems, role in, 165
environmental management, 167
enzyme activities, 166
invertase and urease activities, 166
microbial biomass, 167
phosphorus, 166

Soil fertility
agroforestry systems, 183
coastal soils, 51
management, 66

Soil microbial biomass (SMB), 24
Soil nutrient transformation, 167–170
Soil reclamation, agroforestry systems, 184–186
Soil resources

characteristics of salt-affected soils, 45–47
distribution, 42, 43
FAO Land and Plant Nutrition

Management Service, 42
groups in India, 42
inventory, 41
National Bureau of Soil Survey and Land

Use Planning, 43
post-independence development, 43
pressure, 41
regional distribution, 42
soil degradation, 43–44
utilisation, 41

Soil salinity
plant growth and development, 106, 107
rhizosphere-associated microbes, 105, 106
soil salinization process, 104–105

Soil salinization process, 104–105
Soluble salts, 174, 175
Soluble sources of calcium, 198
Subsurface drip irrigation (SDI), 23
Sunken bed-based farming system model, 69
Sustainability evaluations, agroforestry

systems, 188–190
Sustainable agriculture

adaptation, 3
agro-industrialization and food marketing, 4
ecological balance, 2
engineering, agronomic and biological

approaches, 4
food production, principles of, 3
food requirements, 2
high-yielding varieties, chemical fertilizers

and liberal irrigation, 2
for human future, 2 (see also Groundwater

integrated landscape management, 3
land degradation, 1


Page 316


saline lands, productivity of
aquaculture, 26–27
chemicals and amendments, 23–25
groundwater recharge, 21–22
irrigation management, 22–23
land drainage, 18–20
land shaping models, 20–21
mcrobial approaches, 27–28
research constraints, 28–30
salinity mitigation, 25–26

salinity-environment interaction, 13–15
salt stress alleviation, 12–13
social and environmental costs, 4–6
soil erosion, 1
world population and global economic

transformation, 3
Sustainable crop production, 101

Tamarix articulata, 177, 178
Terminalia arjuna, 177, 178, 180, 181,

183–186, 191
Tonoplast intrinsic proteins (TIPs), 145
Total dissolved salts (TDS), 96
Translocation factor (TF), 219, 220
Transplanting/sowing method, 63

Upconing, 50
USDA classification, 45

Vegetative bioremediation, 211

agroforestry systems, 277
food and fodders, 276
sodic soil amelioration, 277
soil salinity/sodicity, 276

Vertisols, saline, 48
Vesicular arbuscular mycorrhiza (VAM), 218

fungal spore density, 91
Glomus species, 91
morphological criteria, 91
saline environment, 91
salt stress, 276
spores/infectivity, 91

Walter’s classification, halophytes, 218, 219
Waterlogged sodic soils, 48–49

fish pond-based integrated farming system
model, 68–69

land modification, 68
raised bed-based farming system model, 69
sunken bed-based farming system model, 69

World Commission on Environment and
Development (WCED), 189

Xero-halophytes, 72
X intrinsic proteins (XIPs), 145


Similer Documents