Download Manual Cedrus5 PDF

TitleManual Cedrus5
File Size2.2 MB
Total Pages239
Table of Contents
                            Portada
Índice
A-Módulo básico
B-Editor gráfico
C-Visualizador gráfico
D-Refuerzo y carga última
E-Pretensado
F-Análisis dinámico
G-Muros
                        
Document Text Contents
Page 1

Manual
Starting from program version 1.19

Copyright Cubus AG, Zürich
www.cubus.ch

Page 2

Table of Contents

1CEDRUS–5 Table of Contents

Part A�Base Module A−1 . . . . . . . . . . . . . . . . . . . . . . . .

A 1 Introduction A−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A 1.1 Changes since CEDRUS�4 A−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A 2 Basic Theory A−3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A 2.1 Element Model and Solution Method A−3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A 2.2 Modelling A−4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A 2.2.1 Geometry of the Plan Outline A−4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A 2.2.2 Slab Thickness and Material A−5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Isotropic Material A−5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Drilling%Soft Material A−5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Orthotropic Material A−5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Downstanding Beams A−6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A 2.2.3 Area%Supported Elements A−7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A 2.2.4 Columns / Point Supports A−7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Point Supports A−7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Area Supports A−7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A 2.2.5 Walls / Line Supports A−8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A 2.2.6 Lines of Symmetry A−9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A 2.2.7 Hinges A−10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A 2.2.8 Loads A−10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A 2.2.9 The FE Mesh A−11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A 2.3 Actions and Limit State Specifications A−12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A 2.3.1 Basic Considerations A−12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A 2.3.2 Overview of the Limit State Specifications A−12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A 2.3.3 Actions A−13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Definition of the term ’Action’ A−13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
How actions are formed A−13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Dialog with the List of Actions A−14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Properties of an Action A−14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Action Specification A−14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Automatically−generated Action Specifications A−16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A 2.3.4 Limit Values of nonlinearly−determined Results A−16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A 2.3.5 Limit State Specifications with Action Sets A−17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A 2.3.6 Automatic Generation of Action Combinations A−17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A 2.4 Load Transfer from Floor to Floor A−20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A 2.4.1 Overview A−20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Problem A−20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Realization in CEDRUS%5 A−20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A 2.4.2 Load Export A−21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Automatically generated Export Combinations A−21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Manually created Export Combinations A−22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Calculating the Export Combinations A−22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A 2.4.3 Load Import A−24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A 2.4.4 Checklist for the Load Transfer A−25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A 2.5 Results A−26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A 2.5.1 Raw Results A−26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A 2.5.2 The Structuring of the Output of Results A−26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The quantities for load cases and load case combinations A−26 . . . . . . . . . . . . . . . . . . . . . .
Quantities for limit state specifications (envelope values) A−27 . . . . . . . . . . . . . . . . . . . . . .

Page 119

B 4 Input of Graphics ObjectsPart B The Graphics Editor

B–45CEDRUS–5

Properties of the tangents t1
and t2 of the selected
construction points
according to Fig. B−4

Circular arc as transition
element according to
Fig. B−5

Straight lines as transition
element according to
Fig. B−5

Reducing and increasing the value in the
edit box shown on the left by the increment

Increment

Joining: both edit boxes shown on
the left are incremented at the same
time

You can define the length and direction of the two tangents in the Properties dialogue.
Tangent ’1’ determines the shape of the curved section before − in the direction of the
curved polygon − and tangent ’2’ after the construction point. Tangent ’2’ is identified
by an arrow on the tangent handle (see Fig. B−4). At each end of the curved polygon
only one tangent is available.

Page 120

Part B The Graphics Editor B 4 Input of Graphics Objects

B–46 CEDRUS–5

2

1

1
2

t1

t2

t2

t1

dx

dy



construction point

section marker

tangent handle 1

tangent handle 2

Fig. B–4 Curved polygon with points, markers, tangents and handles

In the Properties dialogue transition elements (straight lines, circular arcs) can be
defined on both sides of a construction point. Transition element ’1’ lies in the direction
of the curved polygon before and transition element ’2’ after the construction point. The
transition element ’Straight Line’ has length ’g’ and the direction of the tangent. The
transition element ’Circular Arc’ is defined by the subtended angle ��� and the radius
’r’ (see also Fig. B−5).

Fig. B–5 Transition elements at the construction points of a curved polygon

1
g1

2

�1

�2

1 2

r1

r2

t1 t2 ri = radius of transition circular arc i

�i = subtended angle of transition circular arc i

gi =length of transition straight line i

ti = length of tangent i

B 4.6 Circles and circular arcs

B 4.6.1 Introduction

In the input of circular arcs three different input methods are available. In the toolbar
of the Graphics Editor always only the last used input method is shown in a button. One
can, however, use another input method by clicking on the small triangle in the right
bottom corner of the button and then choose the desired input method. After
completion of the input, the circular arcs are converted to a polygon with a freely
choosable degree of subdivision.

Circular arc defined by 3 points
Circular arc defined by 2 points and centre of circle
Full circle defined by centre of circle and a point on the circumference

Page 238

G 3 Slab with Normal ForcesPart G Walls

G–9CEDRUS–5

G 3 Slab with Normal Forces

G 3.1 Model

’Slabs with normal forces’ (SwN) are a combination of slobs with pure bending and walls
with pure membrane action. Therefore the nodes of a SwN model have 6 degree of
freedoms, DZ, RX, RY from the slab aund DX, DY, RZ from the wall.

The SwN model of CECRUS�5 does cover structures with a continous middle plane only.
i.e. zones with different thickness are all interconnected without eccentricity.

This applies to downstanding beams as well. Therefore, if you start a new project as
a slab and enter (eccentrically connected) downstanding beams, after a change of the
structure type to SwN (see. G 3.2) the beam�zones will be centrically connected.

The feature SwN is especially tailored for pre� and posttensioned flat slabs, which are
not affected by this restriction.

In order to input all the data needed to properly model a combined slab�wall system,
the attribute�dialogs of the supports (e.g. walls and columns) have two tabsheets
regarding the support conditions:

Page 239

Part G Walls G 3 Slab with Normal Forces

G–10 CEDRUS–5

G 3.2 Changing the Structural Type

Having initially choosen the structural type of a new project, there are some restrictions
in changing it later. This is shown in the following graph:

Slab Wall

Slab with
normal forces

G 3.3 Results

Load cases and
load case combina�
tions:

Reinforcement:

Limit state values:

displacements

reinforcement forces

displacements

section forces

point and line reactions

C
o

n
to

u
r

p
lo

t

P
ri

n
c
ip

le
v

a
lu

e
s

S
e
c
ti
o

n
s

A
x
o

n
o

m
e
tr

ic
a
l

Ta
b

le
s

N
u

m
e
ri

c
a
l/
g

ra
fi
c
a
l

stresses

nominal stresses

reactions

reinforcement sections







��



��

���

����

����





Results and their form of presentation:

����

��� �



B
e
a
m

s
e
c
ti
o

n
s













DZ

Similer Documents